Em certa época a VM era utilizada somente em procedimentos de emergência em reanimação ou, em última instância, no tratamento do paciente crítico, hoje a ventilação pulmonar mecânica é um método de suporte respiratório ao paciente, podendo ser utilizada até mesmo preventivamente (VNI) porém, não constituindo uma terapia curativa. Porém, o emprego da ventilação mecânica implica riscos próprios, devendo sua indicação ser prudente e criteriosa, e sua aplicação cercada por cuidados específicos.
1 Classificação
Atualmente, classifica-se o suporte ventilatório em dois grandes grupos:
• Ventilação mecânica invasiva;• Ventilação não invasiva.
Nas duas situações, a ventilação artificial é conseguida com a aplicação de pressão positiva nas vias aéreas. A diferença entre elas fica na forma de liberação de pressão: enquanto na ventilação invasiva utiliza-se uma prótese introduzida na via aérea, isto é, um tubo oro ou nasotraqueal (menos comum) ou uma cânula de traqueostomia, na ventilação não invasiva, utiliza-se uma máscara como interface entre o paciente e o ventilador artificial.
Neste artigo falaremos com mais profundidade sobre a ventilação mecânica invasiva. Os tipos de ciclagem, os parâmetros a serem observados e os principais cuidados com o paciente em VM.
2 Objetivo fisiológico da ventilação mecânica
- Manter ou modificar a troca gasosa pulmonar:
- Ventilação alveolar (PaCO2 e pH): Em certas circunstâncias, o objetivo pode ser aumentar a ventilação alveolar (hiperventilação para reduzir a pressão intracraniana) ou reduzir a ventilação alveolar de maneira controlada (hipercapnia permissiva); porém, o objetivo usualmente adotado é normalizar a ventilação alveolar.
- Oxigenação arterial (PaO2, SaO2, CaO2): O objetivo é atingir e manter valores aceitáveis de oxigenação arterial (PaO2 > 60 mmHg, SaO2> 90%). A oferta de oxigênio aos tecidos (D’O2) deve ser considerada, corrigindo fatores como o conteúdo arterial de oxigênio (hemoglobina) e o débito cardíaco.
- Aumentar o volume pulmonar:
- Insuflação inspiratória final: visa prevenir ou tratar atelectasia;
- Otimizar a Capacidade Residual Final (CRF): Utilizar a PEEP em situações em que a redução na CRF pode ser prejudicial (redução da PaO2, maior injúria pulmonar), como na SARA e em pós-operatório com dor;
- Reduzir o trabalho respiratório muscular.
3 Objetivos clínicos da ventilação mecânica
- Reverter a hipoxemia, aumentando a ventilação alveolar, o volume pulmonar e a oferta de oxigênio;
- Reverter a acidose respiratória aguda;
- Prevenir ou reverter atelectasia;
- Reverter fadiga dos músculos respiratórios;
- Permitir sedação, anestesia ou uso de bloqueadores neuromusculares;
- Reduzir consumo de oxigênio sistêmico e miocárdico;
- Reduzir pressão intracraniana (PIC);
- Estabilizar caixa torácica.
4 Princípios da ventilação mecânica
A VM se faz através da utilização de aparelhos que, intermitentemente, insuflam as vias respiratórias com volumes de ar (volume corrente). O movimento do gás para dentro dos pulmões ocorre devido à geração de um gradiente de pressão entre as vias aéreas superiores e o alvéolo.
Para tanto, existem alguns fatores que devem ser controlados durante a VM:
- FiO2 (concentração de oxigênio): necessária para manter uma taxa arterial de oxigênio (PaO2) adequada. O FiO2 inicial em qualquer paciente que é introduzido na ventilação mecânica deve ser de 100%. Esse valor deve ser alterado de acordo com a evolução do paciente até alcançar os valores de oferta de O2 em ar ambiente, que é de 21%.
- Volume corrente (VC): é o volume de ar que deve ser administrado ao paciente em cada ciclo respiratório. O volume ideal para cada paciente é calculado multiplicando o peso aproximado do paciente por 6-8.
- Fluxo inspiratório (V): é a velocidade em que o ar será administrado. Quanto maior o fluxo maior a velocidade que o volume corrente será administrado. O fluxo deve ficar entre 40 e 60 L/min.
- Frequência respiratória (FR): é a quantidade de ciclos respiratórios realizados em um minuto. São resultado do tempo inspiratório (Ti) e o tempo expiratório (Te). A Fr deve ser programada de acordo com a necessidade do paciente, sendo reduzida até que o ventilador não seja o responsável pelos disparos de cada ciclo.
- Tempo inspiratório (Ti): é o tempo em que ocorre a insuflação do pulmão. Depende dos valores do fluxo. Quanto maior o fluxo, menor será o Ti.
- Tempo expiratório (Te):é o tempo de desinsuflamento pulmonar. Pode ser definido pelas necessidades metabólicas do paciente como através da programação prévia do ventilador.
- Relação I:E: é a relação entre o tempo inspiratório e o tempo expiratório. Em geral, o valor normal da relação I:E é de 1:2, podendo ser alterado de acordo com a necessidade do paciente. Contudo, o tempo inspiratório nunca deve ser maior que o tempo expiratório.
- PEEP: é a pressão expiratória final que fica dentro do alvéolo. Quando um paciente está em um ventilador mecânico, é necessário que a PEEP seja mantida para evitar o colabamento dos alvéolos. O valor fisiológico da PEEP é de 5 cmH2O e esse deve ser o valor programado no ventilador.
- Pressão inspiratória: é a pressão máxima que deve ser exercida internamente na caixa torácica, esta não deve ultrapassar o valor de 40 cmH2O.
- Sensibilidade: nível de pressão ou fluxo predeterminado que deve ser atingido para que seja feito o disparo que irá iniciar a inspiração. A sensibilidade permite que o paciente entre em conjunto com a máquina nos disparos inspiratórios. Quanto maior a sensibilidade, maior a facilidade do paciente realizar um disparo.
- Volume minuto: é a quantidade de ar que foi administrado ao paciente durante um minuto. É o produto do volume corrente pela frequência respiratória.
Assim, o princípio do ventilador mecânico é gerar um fluxo de gás que produza determinada variação de volume com variação de pressão associada. As variações possíveis para esta liberação de fluxo são enormes e, com o progresso dos ventiladores microprocessados, as formas de visualizar e controlar o fluxo, o volume e a pressão estão em constante aprimoramento. Atualmente, a maior parte dos ventiladores artificiais apresenta telas nas quais se podem visualizar as curvas de volume, fluxo e pressão ao longo do tempo.
5 Ciclo ventilatório
O ciclo ventilatório durante a ventilação mecânica com pressão positiva pode ser dividido em:
- Fase inspiratória: Corresponde à fase do ciclo em que o ventilador realiza a insuflação pulmonar, conforme as propriedades elásticas e resistivas do sistema respiratório. Válvula inspiratória aberta;
- Mudança de fase (ciclagem): Transição entre a fase inspiratória e a fase expiratória;
- Fase expiratória: Momento seguinte ao fechamento da válvula inspiratória e abertura da válvula expiratória, permitindo que a pressão do sistema respiratório equilibre-se com a pressão expiratória final determinada no ventilador;
- Mudança da fase expiratória para a fase inspiratória (disparo): Fase em que termina a expiração e ocorre o disparo (abertura da válvula ins) do ventilador, iniciando novo ciclo.
6 Ciclagem dos ventiladores
É o modo pelo qual os ciclos ventilatórios são disparados/ciclados. São classificados em quatro modalidades de acordo com o início da inspiração.
- Ciclados à tempo: a inspiração termina de acordo com um tempo predeterminado. A quantidade de gás ofertada e a pressão nas vias aéreas vão variar, a cada respiração, dependendo das modificações da mecânica pulmonar.
- Ciclados à pressão: a inspiração cessa quando é alcançada a pressão pulmonar máxima programada. Os volumes oferecidos irão variar de acordo com as mudanças da mecânica pulmonar. Contudo, o volume minuto não é garantido.
- Ciclados à volume: a inspiração termina assim que o volume corrente programado é administrado.
- Ciclados à fluxo: a inspiração termina assim que um determinado fluxo é alcançado.
7 Modos ventilatórios
- Modo controlado: Neste modo, fixa-se a freqüência respiratória, o volume corrente e o fluxo inspiratório. O inicio da inspiração (disparo) ocorre de acordo com a freqüência respiratória pré-estabelecida. A transição entre a inspiração e a expiração (ciclagem) ocorre após a liberação do volume corrente pré-estabelecido em velocidade determinada pelo fluxo. Na ventilação controlada, o volume-minuto é completamente dependente da freqüência e do volume corrente do respirador. Nenhum esforço respiratório do paciente irá contribuir para o volume-minuto. Entre suas indicações estão os pacientes que não conseguem realizar esforço respiratório (traumatismo raquimedular, depressão do SNC por drogas, bloqueio neuromuscular). A combinação de ventilação controlada e bloqueio neuromuscular possibilita a redução do consumo de oxigênio, sendo freqüentemente empregada em pacientes com SARA. Adicionalmente, esta combinação, especialmente quando associada à hipercapnia permissiva, é utilizada para a redução do volutrauma em pacientes com SARA e, também, para a diminuição do barotrauma em asmáticos difíceis de ventilar.
- Modo assistido controlado: No modo assisto-controlado, o ventilador “percebe” o esforço inspiratório do paciente e “responde” oferecendo-lhe um volume corrente predeterminado. Esse esforço inspiratório deve ser o necessário para vencer o limiar de sensibilidade da válvula de demanda do ventilador, desencadeando, a partir daí, a liberação do volume corrente. Nesta situação, a freqüência respiratória pode variar de acordo com o disparo decorrente do esforço inspiratório do paciente, porém mantêm-se fixos tanto o volume corrente como o fluxo. Caso o paciente não atinja o valor pré-determinado de sensibilidade para disparar o aparelho, este manterá ciclos ventilatórios de acordo com a freqüência respiratória mínima indicada pelo operador.
- Ventilação mandatória intermitente (SIMV): A intervalos regulares, o respirador libera um volume previamente determinado. Fora destes ciclos, o paciente respira espontaneamente através do circuito do ventilador, portanto, com freqüência e volume corrente que variarão de acordo com a necessidade e capacidade individuais. Ao contrário do modo assisto-controlado, na SIMV não existe uma sensibilidade a ser vencida.
- Pressão de suporte: Este é um modo de ventilação mecânica espontânea, ou seja, disparado e ciclado pelo paciente, em que o ventilador assiste à ventilação através da manutenção de uma pressão positiva pré-determinada durante a inspiração até que o fluxo inspiratório do paciente reduza-se a um nível crítico, normalmente 25% do pico de fluxo inspiratório atingido. Isto permite que o paciente controle a freqüência respiratória e o tempo inspiratório e, dessa forma, o volume de ar inspirado. Assim, o volume corrente depende do esforço inspiratório, da pressão de suporte pré-estabelecida e da mecânica do sistema respiratório. Pode ser adicionada ao suporte ventilatório total ou parcial (SIMV), vencendo a resistência do tubo e do circuito durante a respiração espontânea.
- CPAP: é a ventilação espontânea contínua assistida por um ventilador. Neste modo, o ventilador mantém uma pressão positiva durante todo o ciclo respiratório, tanto da inspiração como na expiração.
8 Estratégia inicial de uso
A modalidade inicial da ventilação mecânica deve ser preferencialmente assistido-controlada. Os parâmetros deverão ser ajustados inicialmente como protocolo a seguir:
- FiO2: 100% - Recomenda-se que no início do suporte ventilatório seja ofertado o valor máximo de concentração de oxigênio, que posteriormente deverá ser adequado de acordo com o quadro do paciente, reduzindo a FiO2 mais segura, em torno de 50% objetivando uma concentração de O2 suficiente para manter uma SpO2 > 90%.
- Frequência Respiratória: 8-12 rpm - O valor estabelecido após os primeiros momentos de suporte ventilatório deverá estar de acordo com parâmetros como a PaCO2 e pH desejados podendo variar e chegar a níveis de até 20 ipm. Porém deve-se tomar cuidados para com o desenvolvimento de auto-PEEP em altas frequências.
- Volume Corrente: 6-8 ml/Kg - Valores baseados em 8ml/Kg geralmente são satisfatórios, porém variações de acordo com determinados quadros são necessárias. Em SARA, por exemplo, não raro é necessário basearmos o volume corrente em 5ml/Kg e em quadros de pulmões mais estáveis poderemos chegar a volumes baseados em até 12ml/Kg. É prudente, além de calcular-se adequadamente o VC, evitando que a pressão inspiratória ultrapasse 35cmH2O como padrão de segurança inicial.
- Fluxo: 40-60 L/min - Nos ciclos controlados, um fluxo entre 40 e 60l/min geralmente é suficiente, podendo chegar a níveis de até 90l/min.
- Relação I:E: de 1:1,5 a 1:2 com tempo inspiratório de 0,8 a 1,2 s. Em pacientes obstrutivos recomenda-se uma relação I:E < 1:3.
- PEEP: 5 cmH2O - Iniciando a ventilação com PEEP em torno de 5cmH2O, recomenda-se aumenta-la progressivamente objetivando manter uma SpO2 satisfatória (>90%). A monitorização hemodinâmica é recomendada após 15cmH2O.
- Sensibilidade: -1 cmH2O - recomenda-se, em seguida, reduzir esses valores para -2 cmH2O para facilitar o disparo realizado pelo paciente.
Os ajustes posteriores dependerão da evolução do paciente, que pode evoluir para um desmame como regredir para uma ventilação mecânica do modo controlado.
Referências
- Sociedade Brasileira de Pneumologia e Tisiologia; Associação de Medicina Intensiva Brasileira. II Consenso Brasileiro de Ventilação Mecânica. J Bras Pneumol. 2000, 26 (Supl 2)
- Sociedade Brasileira de Pneumologia e Tisiologia; Associação de Medicina Intensiva Brasileira. III Consenso Brasileiro de Ventilação Mecânica. J Bras Pneumol. 2007, 33 (Supl 2)
Nenhum comentário:
Postar um comentário